Step of Proof: select_nth_tl
11,40
postcript
pdf
Inference at
*
2
1
I
of proof for Lemma
select
nth
tl
:
.....truecase..... NILNIL
1.
T
: Type
2.
T
List
3.
u
:
T
4.
v
:
T
List
5.
n
:{0...||
v
||},
i
:{0..(||
v
|| -
n
)
}. nth_tl(
n
;
v
)[
i
] =
v
[(
i
+
n
)]
6.
n
: {0...||
v
||+1}
7.
i
: {0..((||
v
||+1) -
n
)
}
8.
n
0
[
u
/
v
][
i
] = [
u
/
v
][(
i
+
n
)]
latex
by ((Assert
n
= 0)
CollapseTHENA ((Auto_aux (first_nat 1:n) ((first_nat 2:n),(first_nat 3:n
C
)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
9.
n
= 0
C1:
[
u
/
v
][
i
] = [
u
/
v
][(
i
+
n
)]
C
.
Definitions
t
T
,
False
,
P
Q
,
A
,
P
&
Q
,
i
j
<
k
,
A
B
,
{
i
..
j
}
,
{
i
...
j
}
origin